[发明专利]识别模型的训练及应用方法、装置、计算设备及存储介质有效
申请号: | 201910791312.1 | 申请日: | 2019-08-26 |
公开(公告)号: | CN110569359B | 公开(公告)日: | 2023-09-15 |
发明(设计)人: | 唐亚腾;钟滨;徐进;王志平 | 申请(专利权)人: | 腾讯科技(深圳)有限公司 |
主分类号: | G06F16/35 | 分类号: | G06F16/35 |
代理公司: | 北京同达信恒知识产权代理有限公司 11291 | 代理人: | 李娟;王英 |
地址: | 518044 广东省深圳*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本申请公开了一种识别模型的训练及应用方法、装置、计算设备及存储介质。该模型训练方法包括:获取不同来源的文本数据,其中,不同来源的文本数据中包括第一类文本数据和第二类文本数据,所述第一类文本数据具有来源标签,所述第二类文本数据具有预定属性标签,所述预定属性不包括文本来源;基于同一特征提取网络提取所述文本数据的特征数据;基于第一类文本数据的特征数据训练第一分类器,并基于第二类文本数据的特征数据训练第二分类器,其中所述第一分类器用于确定文本数据的来源,所述第二分类器用于确定文本数据的预定属性。由此,使得所训练的识别模型(机器学习模型)能够针对不同来源的数据间快速迁移并应用,从而节约成本并节省人力。 | ||
搜索关键词: | 识别 模型 训练 应用 方法 装置 计算 设备 存储 介质 | ||
【主权项】:
1.一种识别模型的训练方法,其特征在于,所述方法包括:/n获取不同来源的文本数据,其中,所述不同来源的文本数据中包括第一类文本数据和第二类文本数据,所述第一类文本数据具有来源标签,所述第二类文本数据具有预定属性标签,所述预定属性不包括文本来源;/n基于同一特征提取网络提取所述文本数据的特征数据;/n基于第一类文本数据的特征数据训练第一分类器,并基于第二类文本数据的特征数据训练第二分类器,其中所述第一分类器用于确定文本数据的来源,所述第二分类器用于确定文本数据的预定属性。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于腾讯科技(深圳)有限公司,未经腾讯科技(深圳)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910791312.1/,转载请声明来源钻瓜专利网。