[发明专利]一种心电信号深度学习模型的轻量化方法有效
申请号: | 201910793585.X | 申请日: | 2019-08-27 |
公开(公告)号: | CN110558972B | 公开(公告)日: | 2022-04-12 |
发明(设计)人: | 洪申达;傅兆吉;周荣博;俞杰 | 申请(专利权)人: | 安徽心之声医疗科技有限公司 |
主分类号: | A61B5/318 | 分类号: | A61B5/318;A61B5/00 |
代理公司: | 合肥市长远专利代理事务所(普通合伙) 34119 | 代理人: | 金宇平 |
地址: | 230000 *** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提出的一种心电信号深度学习模型的轻量化方法,包括:构建输入为样本数据,输出为预测概率的复杂深度学习模型F;根据更新后的复杂深度学习模型F获得每一条样本数据对应的预测概率;构建输入为样本数据,输出为轻量化预测概率的轻量化深度学习模型G;结合样本数据、真实标签和预测概率对轻量化深度学习模型G进行训练更新。本发明中,通过复杂深度学习模型F的预测结果结合真实标签对轻量化深度学习模型G进行训练,保证了轻量化深度学习模型G的预测精度;通过结构简单、节点较少的轻量化深度学习模型G对心电信号数据进行预测,耗时少,效率高,实现了学习模型的低复杂度与预测精度的兼得。 | ||
搜索关键词: | 一种 电信号 深度 学习 模型 量化 方法 | ||
【主权项】:
1.一种心电信号深度学习模型的轻量化方法,其特征在于,包括:/nS1、对样本数据进行人工标注,获得真实标签;/nS2、构建输入为样本数据,输出为预测概率的复杂深度学习模型F;并选择输入为预测概率,输出为预测标签的第一函数;/nS3、结合样本数据和真实标签对复杂深度学习模型F进行训练更新,并根据更新后的复杂深度学习模型F获得每一条样本数据对应的预测概率;/nS4、构建输入为样本数据,输出为轻量化预测概率的轻量化深度学习模型G;并选择输入为轻量化预测概率,输出为轻量化预测标签的第二函数;轻量化深度学习模型G的模型深度和参数数量均少于复杂深度学习模型F;第一函数和第二函数相同;/nS5、结合样本数据、真实标签和预测概率对轻量化深度学习模型G进行训练更新;/nS6、结合更新后的轻量化深度学习模型G和第二函数建立输入为数据,输出为轻量化预测标签的数据预测模型。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于安徽心之声医疗科技有限公司,未经安徽心之声医疗科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910793585.X/,转载请声明来源钻瓜专利网。