[发明专利]一种快速实时性轻量级的目标检测方法及设备在审

专利信息
申请号: 201910806191.3 申请日: 2019-08-29
公开(公告)号: CN110503098A 公开(公告)日: 2019-11-26
发明(设计)人: 郭宝龙;黄喆;魏志飞;李诚;王赓;廖楠楠;贺王鹏 申请(专利权)人: 西安电子科技大学
主分类号: G06K9/32 分类号: G06K9/32;G06K9/62;G06N3/04
代理公司: 61220 西安亿诺专利代理有限公司 代理人: 贺珊<国际申请>=<国际公布>=<进入国
地址: 710000 陕西省西安市*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明是一种快速实时性轻量级的目标检测方法及设备,适用于大数据下的目标匹配领域、目标快速检测领域、实时性目标监控领域等。一种快速实时性轻量级的目标检测方法及设备,包括(1)对图像中目标的先验框进行聚类;(2)构建基于Darknet的卷积神经网络,进行目标检测;本发明在主干网路中,具有相同特征大小的特征图会被连接起来。这样,全连接层既可以提取浅层特征,又可以提取深层特征。在第一层张量的大小是13×13×18,这个滤波器用来检测大目标。然后通过两个卷积层和一个上采样层,网络得到第二个张量的大小是26×26×18,这个滤波器用来检测中目标。最后,将得到的特征再次经过卷积层和上采样层,特征向量的大小变成52×52×18,用来进行小目标的检测。
搜索关键词: 目标检测 实时性 滤波器 上采样 卷积 检测 卷积神经网络 先验 快速检测 目标监控 目标匹配 特征向量 大数据 第一层 连接层 特征图 小目标 网路 构建 聚类 浅层 主干 图像 网络
【主权项】:
1.一种快速实时性轻量级的目标检测方法,其特征在于:/n(1)对图像中目标的先验框进行聚类;/n所述聚类为k-means++聚类方法;/n(2)构建基于Darknet的卷积神经网络,进行目标检测;/n该卷积神经网络包括n个卷积层;将图像依次通过对n个卷积层进行卷积操作以提取图像的特征值:第n个卷积层的输出作为第n+1个卷积层的输入,每一次卷积操作后得到一个特征图;将具有相同特征比例尺的特征图的相关卷积层连接依次输入至卷积层后再进行上采样,再进行目标检测。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910806191.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top