[发明专利]基于核谱映射迁移集成的异构跨项目软件缺陷预测方法有效
申请号: | 201910824735.9 | 申请日: | 2019-09-02 |
公开(公告)号: | CN110659207B | 公开(公告)日: | 2020-09-08 |
发明(设计)人: | 王世海;李成群;何俊秀;秦庆强;童浩楠 | 申请(专利权)人: | 北京航空航天大学 |
主分类号: | G06F11/36 | 分类号: | G06F11/36;G06K9/62 |
代理公司: | 北京慕达星云知识产权代理事务所(特殊普通合伙) 11465 | 代理人: | 曹鹏飞 |
地址: | 100191*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于核谱映射迁移集成的异构跨项目软件缺陷预测方法,包括基于过抽样的非平衡学习过程对源数据进行预处理;所述源数据为软件项目的历史缺陷数据;根据所述源数据与目标数据分布的差异信息,以及谱映射造成的信息损失,构建目标函数;所述目标数据为待预测的异构跨项目软件;通过多核学习把原始空间映射到多个高维空间,在每个高维空间上对所述目标函数进行最优化以寻找最优公共子空间,在每个公共子空间上训练一个分类器;利用集成学习把所有所述分类器进行综合集成,生成预测模型;根据所述预测模型预测所述目标数据的标签。该方法具有较高的缺陷预测准确率,有利于提高软件测试的工作效率。 | ||
搜索关键词: | 基于 映射 迁移 集成 异构跨 项目 软件 缺陷 预测 方法 | ||
【主权项】:
1.一种基于核谱映射迁移集成的异构跨项目软件缺陷预测方法,其特征在于,包括:/nS1、基于过抽样的非平衡学习过程对源数据进行预处理;所述源数据为软件项目的历史缺陷数据;/nS2、根据所述源数据与目标数据分布的差异信息,以及谱映射造成的信息损失,构建目标函数;所述目标数据为待预测的异构跨项目软件;/nS3、通过多核学习把原始空间映射到多个高维空间,在每个高维空间上对所述目标函数进行最优化以寻找最优公共子空间,在每个公共子空间上训练一个分类器;/nS4、利用集成学习把所有所述分类器进行综合集成,生成预测模型;根据所述预测模型预测所述目标数据的标签。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910824735.9/,转载请声明来源钻瓜专利网。