[发明专利]一种基于结构保持零样本学习的鸟类濒危物种识别方法有效
申请号: | 201910836592.3 | 申请日: | 2019-09-05 |
公开(公告)号: | CN110717512B | 公开(公告)日: | 2023-04-07 |
发明(设计)人: | 周智恒;牛畅;尚俊媛;黄俊楚;张鹏宇 | 申请(专利权)人: | 华南理工大学 |
主分类号: | G06V10/764 | 分类号: | G06V10/764 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 蒋剑明 |
地址: | 510640 广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于结构保持零样本学习的鸟类濒危物种识别方法,包括如下步骤:数据输入步骤,输入数据集包括常见鸟类图像视觉特征、语义信息、标签信息等,以及鸟类濒危物种的语义信息;训练步骤,学习视觉特征空间到语义空间的双向映射,同时使用流形一致性对该映射作进一步的约束。将优化问题归结成Sylvester方程求解问题,求解过程简单易实现,求解的结果为映射矩阵P;预测步骤,利用训练步骤得到的映射矩阵P对给定语义信息的鸟类濒危物种图像做出识别。本发明保留了数据间的结构信息,解决了领域漂移的问题,提高了图像分类的精确度,使之能够应用到复杂的鸟类图像识别的问题中,并能够对没有已知标签信息的濒危物种进行识别。 | ||
搜索关键词: | 一种 基于 结构 保持 样本 学习 鸟类 濒危 物种 识别 方法 | ||
【主权项】:
1.一种基于结构保持零样本学习的鸟类濒危物种识别方法,其特征在于,所述的鸟类濒危物种识别方法包括:/n图像数据输入步骤,输入的图像数据分为可见类别数据和不可见类别数据,其中,所述的可见类别数据指常见的可获得其标签信息的鸟类,包括可见类别鸟类图像视觉特征、语义信息、标签信息;所述的不可见类别数据指数据匮乏的濒危鸟类,包括濒危鸟类的语义信息;/n训练步骤,接收输入的图像数据后,基于可见类别数据学习视觉特征空间到语义空间的双向映射,同时增加对映射矩阵P的两种流形一致性约束,得到最终模型并求其最优解,将该过程归结为Sylvester问题,通过调用MATLAB中的工具箱函数,即可求得该方程的解,得到映射矩阵P;/n预测步骤,将待分类的濒危鸟类物种作为测试样本,输入测试样本的视觉特征以及不可见类别的语义,将每个测试样本用所述的映射矩阵P作映射,得到其在语义空间的映射结果,将得到的结果与给定的类别语义在语义空间作近邻计算,找出最近邻的语义,其对应的类别即为得到的预测值。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910836592.3/,转载请声明来源钻瓜专利网。