[发明专利]基于多迁移学习模型融合的大坝裂缝检测方法有效
申请号: | 201910845138.4 | 申请日: | 2019-09-08 |
公开(公告)号: | CN110544251B | 公开(公告)日: | 2021-02-09 |
发明(设计)人: | 陈峙宇;刘凡;郑豪;杨赛 | 申请(专利权)人: | 河海大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06K9/62 |
代理公司: | 南京品智知识产权代理事务所(普通合伙) 32310 | 代理人: | 奚晓宁 |
地址: | 211100 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明基于多迁移学习模型融合的大坝裂缝检测方法涉及图像识别领域,尤其是一种多模型融合的大坝裂缝检测方法。该方法首先收集道路、墙壁、桥梁和大坝裂缝数据集,对大坝裂缝图片数据集进行数据增强处理;构建MobileNet‑SSD目标检测模型,将SSD算法中原有的VGG网络替换成MobileNet网络结构;进行模型训练;训练完成后,提取道路裂缝检测模型和墙壁裂缝检测模型中已经训练好的MobileNet结构参数,导入未训练的MobileNet‑SSD中,对MobileNet结构进行冻结;利用数据增强后的大坝裂缝数据集进行迁移学习,得到多个模型后,将多个模型进行融合计算,提高大坝裂缝检测的准确度。 | ||
搜索关键词: | 基于 迁移 学习 模型 融合 大坝 裂缝 检测 方法 | ||
【主权项】:
1.一种基于多迁移学习模型融合的大坝裂缝检测方法,其特征在于,包括如下步骤:/n步骤1,收集数据集,包括道路裂缝、墙壁裂缝、桥梁裂缝及大坝裂缝数据集和图片;利用图像数据增强技术,对大坝裂缝图片进行预处理,并扩充到原有数据集,以达到提高模型精度和泛化能力的目的;/n步骤2,构建目标检测网络模型MobileNet-SSD;/n(2-1)MobileNet-SSD目标检测网络模型将SSD算法中原有的VGG网络替换成MobileNet网络结构,MobileNet卷积和普通卷积相比,压缩了大量参数,能有效地减少计算量,加速模型的计算;/n(2-2)在MobileNet网络结构的最后一个卷积层后添加8个卷积层,并从中选取6个卷积层作为SSD网络结构中的特征输出部分;/n(2-3)对步骤(2-2)得到的特征输出部分的所有窗口进行非极大值抑制,去除冗余的检测框,保留其中置信度高的窗口;/n步骤3,基于步骤1中的道路裂缝、墙壁裂缝和桥梁裂缝数据集,进行模型训练,将损失函数分为两部分,即窗口目标类别的置信度损失以及相应的位置回归损失;/n步骤4,步骤3模型训练完成后,提取道路裂缝检测模型、墙壁裂缝检测模型和桥梁裂缝检测模型中已经训练好的MobileNet网络结构参数;重新构建MobileNet-SSD网络,将网络参数随机初始化,在输入大坝裂缝数据集进行训练前,将提取到的MobileNet网络结构参数导入MobileNet-SSD中,对MobileNet网络结构进行冻结;/n步骤5,利用步骤1得到的数据增强后的大坝裂缝数据集进行迁移学习,得到多个模型,进行模型融合;/n将融合后的模型进行测试,在测试过程,计算每个模型之间匹配的预测框,将预测框的位置坐标集合组成矩阵进行线性回归,最终输出框坐标。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河海大学,未经河海大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910845138.4/,转载请声明来源钻瓜专利网。