[发明专利]一种不良数据辨识方法在审
申请号: | 201910854363.4 | 申请日: | 2019-09-10 |
公开(公告)号: | CN110544047A | 公开(公告)日: | 2019-12-06 |
发明(设计)人: | 娄建楼;贾俊奇;曲朝阳;李燕;孙博;王蕾 | 申请(专利权)人: | 东北电力大学 |
主分类号: | G06Q10/06 | 分类号: | G06Q10/06;G06K9/62;G06Q50/06 |
代理公司: | 61248 西安合创非凡知识产权代理事务所(普通合伙) | 代理人: | 杨蕾<国际申请>=<国际公布>=<进入国 |
地址: | 132000 *** | 国省代码: | 吉林;22 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种不良数据辨识方法,包括以下步骤:S1,使用凝聚层次聚类算法和真实Index的模型评估指标,确定PAM算法的初始聚类个数;S2,使用PAM算法对正常数据进行聚类,并计算每类的均方差,得出正常数据的类均方差范围;S3,运用间隙统计算法对待测数据进行聚类并得出结果;S4,比较待测数据所得聚类个数与正常数据通过HC‑Center聚类算法所得聚类个数是否一致,若一致即不存在不良数据,否则需计算每个类的均方差,判断其是否在正常数据的类均方差范围之内,若不在,则类中数据视为不良数据。本发明解决了PAM算法需要人为设定初始聚类个数的缺陷,提高了聚类的准确度;能够高效、准确地对数据进行聚类运算。 | ||
搜索关键词: | 聚类 正常数据 均方差 不良数据 算法 层次聚类算法 聚类算法 聚类运算 模型评估 统计算法 准确度 辨识 凝聚 | ||
【主权项】:
1.一种不良数据辨识方法,其特征在于,包括以下步骤:/nS1,使用凝聚层次聚类算法和真实Index的模型评估指标,确定PAM算法的初始聚类个数;/nS2,使用PAM算法对正常数据进行聚类,并计算每类的均方差,得出正常数据的类均方差范围;/nS3,运用间隙统计算法对待测数据进行聚类并得出结果;/nS4,比较待测数据所得聚类个数与正常数据通过HC-Center聚类算法所得聚类个数是否一致,若一致即不存在不良数据,否则需计算每个类的均方差,判断其是否在正常数据的类均方差范围之内,若不在,则类中数据视为不良数据。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东北电力大学,未经东北电力大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910854363.4/,转载请声明来源钻瓜专利网。
- 上一篇:湿地生态系统稳定性评估方法和系统
- 下一篇:一种商业生态链平台及其运作方法
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理