[发明专利]基于图像分割的降低神经网络训练样本量的方法有效
申请号: | 201910855228.1 | 申请日: | 2019-09-11 |
公开(公告)号: | CN110689057B | 公开(公告)日: | 2022-07-15 |
发明(设计)人: | 张智;光正慧;王欢;翁宗南;肖绍桐;高广 | 申请(专利权)人: | 哈尔滨工程大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06V10/774;G06T7/11;G06T7/62;G06T7/90 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 150001 黑龙江省哈尔滨市南岗区*** | 国省代码: | 黑龙江;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供的是一种基于图像分割的降低神经网络训练样本量的方法。将单张图片分割为不同区域;按照区域发展的先后顺序,给区域进行编号并且记录区域面积;设置一个面积阈值,区域小于阈值的区域舍弃;将保留下来的区域像素进行颜色空间的转化,将像素点的RGB值转化为HIS值,将相邻区域颜色差异大的区域保留,颜色差异小的将区域面积过小的一方舍弃;提取各区域的形状特征,将轮廓较为突出或较为光滑的区域留下,其他的区域舍弃;遍历整张图片,将被舍弃的区域显示为白色,保留的区域按原图显示,得到新图;判断是否将所有图片全部处理完,处理完就将新数据集送入网络训练;否则跳回循环。本发明在提高效率的同时也保留甚至提高了准确率。 | ||
搜索关键词: | 基于 图像 分割 降低 神经网络 训练 样本 方法 | ||
【主权项】:
1.一种基于图像分割的降低神经网络训练样本量的方法,其特征是,将数据集送入神经网络训练之前,对数据集进行下面的操作:/n步骤一、用Mean Shift算法对单张图片按照像素点进行分割;/n步骤二、将分割后的各个区域按照分割顺序标号,将区域面积统计下来,并且找到区域中心像素点设置一个阈值M,将面积小于M的区域直接舍掉;/n步骤三、将保留下来的区域色彩表达从RGB颜色空间转变到HIS颜色空间,并且求出单个区域的平均色彩表示,对比相邻区域的色彩变化,差异明显的保留,差异不明显的情况下,若相对较小的区域面积小于大区域的1/5,则舍去小区域;/n步骤四、提取保留区域的形状特征;/n步骤五、循环区域编号,将废弃区域的像素点的RGB值设置为255,将保留的区域像素点颜色值按原图显示,得到一张新的图片替换掉未处理的图片作为数据样本;/n步骤六、将数据集中的下一张图片样本载入,重复步骤步骤一至步骤五直至所有图片处理完,将新数据集送入神经网络训练。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工程大学,未经哈尔滨工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910855228.1/,转载请声明来源钻瓜专利网。
- 上一篇:一种分类方法及装置、设备和存储介质
- 下一篇:一种基于AI算法的环境检测方法
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序