[发明专利]一种基于神经网络的CT伪影抑制方法、设备以及介质有效

专利信息
申请号: 201910861446.6 申请日: 2019-09-11
公开(公告)号: CN110570492B 公开(公告)日: 2021-09-03
发明(设计)人: 邢宇翔;杜牧歌;高河伟;刘以农;张丽;梁凯超 申请(专利权)人: 清华大学
主分类号: G06T11/00 分类号: G06T11/00;G06N3/08;G06N3/04;G06K9/62
代理公司: 中科专利商标代理有限责任公司 11021 代理人: 杨静
地址: 100084*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 公开了一种用于训练神经网络的方法和设备、图像处理方法和设备以及存储介质。用于训练神经网络的方法包括:构建主干网络和域分类器。主干网络用于对带伪影CT图像进行处理,得到伪影抑制CT图像,域分类器用于对主干网络的域适应层的输出进行处理,得到对于带伪影CT图像所属类别的判别结果。域适应层用于提取所述带伪影CT图像的伪影特征。该类别包括带仿真伪影的CT图像和带实际伪影的CT图像。对主干网络和域分类器进行联合训练,以便基于损失函数对主干网络和域分类器的参数进行调整。当损失函数实现收敛时确定训练完成,将训练得到的主干网络作为目标神经网络。利用上述训练得到的目标神经网络能够实现针对实际扫描下带伪影CT图像的有效伪影抑制。
搜索关键词: 一种 基于 神经网络 ct 抑制 方法 设备 以及 介质
【主权项】:
1.一种用于训练神经网络的方法,包括:/n构建主干网络和域分类器;其中,所述主干网络用于对带伪影CT图像进行处理,得到伪影抑制CT图像,所述域分类器用于对所述主干网络的域适应层的输出进行处理,得到对于所述带伪影CT图像所属类别的判别结果,所述域适应层用于提取所述带伪影CT图像的伪影特征,所述类别包括:带仿真伪影的CT图像和带实际伪影的CT图像;/n对所述主干网络和所述域分类器进行联合训练,以便基于损失函数对所述主干网络和所述域分类器的参数进行调整;以及/n当所述损失函数实现收敛时确定训练完成,将训练得到的所述主干网络作为所述目标神经网络。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910861446.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top