[发明专利]一种车载自组织网络中基于深度学习的节点移动性预测方法有效
申请号: | 201910884475.4 | 申请日: | 2019-09-19 |
公开(公告)号: | CN110648531B | 公开(公告)日: | 2020-12-04 |
发明(设计)人: | 贾亦真;吴胜;董飞鸿;胡向晖 | 申请(专利权)人: | 军事科学院系统工程研究院网络信息研究所 |
主分类号: | G08G1/01 | 分类号: | G08G1/01;G08G1/015;H04W4/40;H04W84/18;G06Q10/04;G06F16/29;G06N3/04;G06N3/08 |
代理公司: | 北京栈桥知识产权代理事务所(普通合伙) 11670 | 代理人: | 刘婷 |
地址: | 100039*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种车载自组织网络中基于深度学习的网络节点移动性预测方法,该方法有效利用交通法规对节点的移动性约束、车辆节点的历史行程数据以及车辆和司机的个性化信息实现车辆节点的未来几个时间点的移动性预测。所述方法为:结合不同类型的车辆运动模型,建立车辆历史行程数据样本库以及交通法规约束数据库,同时约定样本行程数据特征;再利用循环神经网络提取车辆样本移动性深层次特征,建立移动性预测模型;再采用梯度下降反向传播算法训练模型参数。最后利用车辆当前移动的实时数据信息对移动性进行预测。本发明涉及车辆移动模型数据分析及神经网络模型搭建、参数训练实现方法。本发明利用深度学习的非线性预测能力,将车辆行驶数据特征映射到车辆的移动,实现车载自组织网络中节点的移动性预测。 | ||
搜索关键词: | 一种 车载 组织网络 基于 深度 学习 节点 移动性 预测 方法 | ||
【主权项】:
1.一种车载自组织网络中基于深度学习的网络节点移动性预测方法,该方法有效利用交通法规对节点的移动性约束、车辆节点的历史行程数据以及车辆和司机的个性化信息实现车辆节点的未来几个时间点的移动性预测。所述方法为:结合不同类型的车辆运动模型,建立车辆历史行程数据样本库以及交通法规约束数据库,同时约定样本行程数据特征;再利用循环神经网络提取车辆样本移动性深层次特征,建立移动性预测模型;再采用梯度下降反向传播算法训练模型参数;最后利用车辆当前移动的实时数据信息对移动性进行预测。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于军事科学院系统工程研究院网络信息研究所,未经军事科学院系统工程研究院网络信息研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910884475.4/,转载请声明来源钻瓜专利网。