[发明专利]一种基于LSTM的网络流量预测方法有效
申请号: | 201910900159.1 | 申请日: | 2019-09-23 |
公开(公告)号: | CN110545208B | 公开(公告)日: | 2021-10-15 |
发明(设计)人: | 卓永宁;李蕊;段玲;梁雪源;黄林 | 申请(专利权)人: | 电子科技大学 |
主分类号: | H04L12/24 | 分类号: | H04L12/24;G06N3/04;G06N3/08 |
代理公司: | 四川力久律师事务所 51221 | 代理人: | 冯精恒 |
地址: | 611731 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于LSTM的网络流量预测方法,包括:根据流量信号得到突发脉冲串,突发脉冲串是一个用于模拟突发事件的影响因素信号,将流量信号和突发脉冲串输入到网络流量并行LSTM预测器进行流量预测;其中,网络流量并行LSTM预测器包括两个LSTM预测器,两个LSTM预测器内部各层神经网络的系数相同,内部状态信息可以交换,其中一个为主预测器,另一个用于检测突发时刻,两个预测器之间进行内部状态的交换,主预测器利用突发预测器得到的信息进行多变量预测,使其能够适应突发流量导致的流量模式的变化,从而改进预测的准确度。仿真实验表明,网络流量并行LSTM预测器能够适应不同强度的流量变化,相对于传统的单变量LSTM预测器,其预测准确度提高了10%左右。 | ||
搜索关键词: | 一种 基于 lstm 网络流量 预测 方法 | ||
【主权项】:
1.一种基于LSTM的网络流量预测方法,其特征在于,包括步骤如下:/n根据流量信号得到突发脉冲串,将流量信号和突发脉冲串输入到网络流量并行LSTM预测器进行流量预测;其中,所述网络流量并行LSTM预测器包括两个LSTM预测器,两个LSTM预测器内部各层神经网络的系数相同,内部状态信息可以交换;所述突发脉冲串是一个用于模拟突发事件的影响因素信号。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910900159.1/,转载请声明来源钻瓜专利网。