[发明专利]一种老人面部表情的情感识别模型的训练方法及装置有效
申请号: | 201910917644.X | 申请日: | 2019-09-26 |
公开(公告)号: | CN110717423B | 公开(公告)日: | 2023-03-17 |
发明(设计)人: | 王坤侠;段晓珊 | 申请(专利权)人: | 安徽建筑大学 |
主分类号: | G06V40/16 | 分类号: | G06V40/16;G06V10/82;G06N3/0464;G06N3/08 |
代理公司: | 合肥市浩智运专利代理事务所(普通合伙) 34124 | 代理人: | 丁瑞瑞 |
地址: | 230601 安徽省*** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种老人面部表情的情感识别模型的训练方法及装置,方法包括:1)、获取老人脸图像;2)、针对每一张老人脸图像,进行一阶差分和二阶差分处理。再利用预设的小波包尺度函数获取小波包基函数,并根据小波包尺度函数以及小波包基函数,利用卷积算法,获取老人脸图像、一阶差分图像和二阶差分图像的小波包子带;3)、对小波包子带的小波包系数进行统计处理,获取对应于各张老人脸图像的小波包子带的目标特征向量;4)、将目标特征项向量以及对应的表情标签值输入到预先构建的卷积神经网络模型中,训练卷积神经网络模型至收敛,得到训练后的老人面部表情的情感识别模型。应用本发明实施例,可以提高老人面部表情的情感识别的准确率。 | ||
搜索关键词: | 一种 老人 面部 表情 情感 识别 模型 训练 方法 装置 | ||
【主权项】:
1.一种老人面部表情的情感识别模型的训练方法,其特征在于,所述方法包括:/n1)、获取老人脸图像;/n2)、针对每一张老人脸图像,进行一阶差分和二阶差分处理;再利用预设的小波包尺度函数获取小波包基函数,并根据所述小波包尺度函数以及小波包基函数,利用卷积算法,获取所述老人脸图像的小波包子带、一阶差分图像小波包子带和二阶差分图像的小波包子带;/n3)、对各个小波包子带的小波包系数进行统计处理,获取对应于各张老人脸图像的小波包子带的所对应的小波包系数,形成目标特征向量,其中,特征向量包括:小波包系数的最小值、最大值、均值、方差以及中位数;/n4)、将目标特征项向量以及对应的表情标签值输入到预先构建的卷积神经网络模型中,训练所述卷积神经网络模型至收敛,得到训练后的老人面部表情的情感识别模型,其中,所述卷积神经网络包括:若干层卷积层、池化层、全连接层以及输出层。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于安徽建筑大学,未经安徽建筑大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910917644.X/,转载请声明来源钻瓜专利网。