[发明专利]一种基于深度学习的语音端点检测方法及系统有效

专利信息
申请号: 201910917881.6 申请日: 2019-09-26
公开(公告)号: CN110706694B 公开(公告)日: 2022-04-08
发明(设计)人: 不公告发明人 申请(专利权)人: 成都数之联科技股份有限公司
主分类号: G10L15/05 分类号: G10L15/05;G10L15/06;G10L15/16;G10L25/78
代理公司: 成都行之专利代理事务所(普通合伙) 51220 代理人: 熊曦
地址: 610000 四川省*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度学习的语音端点检测方法及系统,包括:利用收集的音频数据生成样本音频数据;分帧处理样本音频数据,划分处理后得到的待训练语音帧为非噪声语音帧和噪声语音帧,获得训练集;利用训练集训练深度神经网络模型,获得训练后的深度神经网络模型;将端点待检测语音数据输入该训练后的模型,输出该语音数据中的所有非噪声语音帧和噪声语音帧;基于非噪声语音帧和噪声语音帧,获得端点待检测语音数据中的非噪声语音段和噪声语音段,提取所有的非噪声语音段在端点待检测语音数据中的起始坐标索引和结束坐标索引为语音端点。本发明解决了传统语音端点检测技术低信噪比识别准确率低、部分方法识别速度慢和语音特征选取困难的问题。
搜索关键词: 一种 基于 深度 学习 语音 端点 检测 方法 系统
【主权项】:
1.一种基于深度学习的语音端点检测方法,其特征在于,所述方法包括:/n步骤1:利用收集的音频数据生成样本音频数据;/n步骤2:分帧处理样本音频数据获得待训练语音帧,根据待训练语音帧中是否包含语音,将待训练语音帧划分为包含语音的待训练非噪声语音帧和不包含语音的待训练噪声语音帧,若干待训练非噪声语音帧和若干待训练噪声语音帧构成训练集;/n步骤3:利用训练集训练深度神经网络模型,获得训练后的深度神经网络模型;/n步骤4:将端点待检测语音数据输入训练后的深度神经网络模型,训练后的深度神经网络模型输出端点待检测语音数据中的所有非噪声语音帧和噪声语音帧;/n步骤5:基于非噪声语音帧和噪声语音帧,获得端点待检测语音数据中的非噪声语音段和噪声语音段,提取所有的非噪声语音段在端点待检测语音数据中的起始坐标索引和结束坐标索引,获得待检测语音数据的语音端点检测结果。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于成都数之联科技股份有限公司,未经成都数之联科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910917881.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top