[发明专利]基于松鼠杂草混合算法的神经网络短期电力负荷预测方法有效

专利信息
申请号: 201910957515.3 申请日: 2019-10-10
公开(公告)号: CN110728401B 公开(公告)日: 2020-11-24
发明(设计)人: 张勋才;丁莉芬;郑新华;赵凯;牛莹;王延峰;杨飞飞;黄春;孙军伟 申请(专利权)人: 郑州轻工业学院
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/06;G06K9/62;G06N3/00;G06N3/04;G06N3/08
代理公司: 郑州优盾知识产权代理有限公司 41125 代理人: 栗改
地址: 450002 *** 国省代码: 河南;41
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提出了一种基于松鼠杂草混合算法的神经网络短期电力负荷预测方法,步骤为:将待预测日前的历史电力负荷、气象因素及日期类型组成样本数据集,运用SPSS软件因子分析对气象因素数据进行主成分分析,提取主成分代替原来的气象因素变量组成新的样本数据集;将归一化后的历史电力负荷数据作为输出样本,气象因素和日期类型作为输入样本;应用松鼠杂草混合算法优化BP神经网络的权重和阈值构建SSIWO‑BP神经网络预测模型;将待预测日期类型和气象因素数据输入SSIWO‑BP神经网络预测模型预测电力负荷值。本发明考虑松鼠杂草混合算法的全局收敛性、高维空间下的稳定性,优化BP神经网络参数,增强了神经网络的泛化能力,提高了模型的预测精度。
搜索关键词: 基于 松鼠 杂草 混合 算法 神经网络 短期 电力 负荷 预测 方法
【主权项】:
1.一种基于松鼠杂草混合算法的神经网络短期电力负荷预测方法,其特征在于,其步骤如下:/n步骤一:将某地区待预测日前的历史电力负荷、气象因素及日期类型的数据组成样本数据集,运用SPSS软件的因子分析对样本数据集中的日最高温度、日最低温度、日平均温度、相对湿度和降水量的气象因素数据进行主成分分析并提取主成分代替原来的气象因素变量;/n步骤二:将步骤一提取的气象因素主成分与日期类型的数据组成新的样本数据集,并归一化;/n步骤三:将杂草算法的繁殖、空间扩散机制应用到松鼠算法中构成松鼠杂草混合算法,利用步骤二归一化后的气象因素的主成分数据与日期类型数据作为输入样本,构建出SSIWO-BP神经网络预测模型,历史电力负荷数据作为输出样本对BP神经网络进行训练;SSIWO-BP神经网络预测模型在训练的过程中,应用SSIWO算法代替传统的梯度下降法来优化BP神经网络的权重和阈值;/n步骤四:将待预测日的日期类型数据和气象因素数据输入SSIWO-BP神经网络预测模型预测其电力负荷值。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于郑州轻工业学院,未经郑州轻工业学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910957515.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top