[发明专利]一种基于深度学习的SAR目标识别方法有效

专利信息
申请号: 201910976348.7 申请日: 2019-10-15
公开(公告)号: CN110895682B 公开(公告)日: 2023-06-06
发明(设计)人: 刘军;肖倩倩;魏艳超 申请(专利权)人: 东北大学
主分类号: G06V20/10 分类号: G06V20/10;G06V10/764;G06V10/82;G06N3/0464;G06N3/048;G06N3/084
代理公司: 沈阳东大知识产权代理有限公司 21109 代理人: 李在川
地址: 110819 辽宁*** 国省代码: 辽宁;21
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种基于深度学习的SAR目标识别方法。首先根据SAR图像所具有的随机斑点噪声和较低的分辨率等固有特性,提出了深度卷积网络模型,并对模型中的激活函数、分类器和目标函数进行了设计,然后针对模型中可能存在的过拟合和不收敛的问题提出了基于RMSprop优化算法和随机梯度下降算法的组合优化算法,最终得到一种基于混合激活的深度卷积神经网络模型,该模型能够有效提升目标识别的准确率并减少目标识别的时间。
搜索关键词: 一种 基于 深度 学习 sar 目标 识别 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东北大学,未经东北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910976348.7/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top