[发明专利]一种基于多尺度深度学习的草图部件分割方法、系统、装置及存储介质在审
申请号: | 201910983270.1 | 申请日: | 2019-10-16 |
公开(公告)号: | CN110889854A | 公开(公告)日: | 2020-03-17 |
发明(设计)人: | 盛建强;汪飞;蔡铁 | 申请(专利权)人: | 深圳信息职业技术学院 |
主分类号: | G06T7/11 | 分类号: | G06T7/11;G06K9/62 |
代理公司: | 深圳市科吉华烽知识产权事务所(普通合伙) 44248 | 代理人: | 胡玉 |
地址: | 518000 广东省深*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种基于多尺度深度学习的草图部件分割方法、系统、装置及存储介质,该方法包括:步骤1,草图预处理步骤:对草图进行平移、旋转和缩放,对草图轮廓进行细化;步骤2,转换步骤:草图轮廓转变为坐标点集;步骤3,深度学习步骤:坐标点集的深度学习表示;步骤4,分割步骤:通过多尺度的草图部件分割框架MCPNet将具有相似几何结构的特征点集中在一起,学习不同特征点之间的全局空间结构和局部结构关系,从而完成草图部件的分割。本发明的有益效果是:本发明MCPNet是建立在坐标点集之上,比直接处理图像像素信息的网络降低了计算的成本,而且将草图信息转换为点集特征进行考虑解决了草图的空白背景对草图分割结果的影响。 | ||
搜索关键词: | 一种 基于 尺度 深度 学习 草图 部件 分割 方法 系统 装置 存储 介质 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳信息职业技术学院,未经深圳信息职业技术学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910983270.1/,转载请声明来源钻瓜专利网。