[发明专利]深度学习模型的训练方法、预测方法和装置有效

专利信息
申请号: 201910983661.3 申请日: 2019-10-16
公开(公告)号: CN110782008B 公开(公告)日: 2022-05-13
发明(设计)人: 苏萌;王然;刘译璟;孙伟;刘钰;苏海波;高体伟 申请(专利权)人: 北京百分点科技集团股份有限公司
主分类号: G06N3/04 分类号: G06N3/04;G06N3/08;G06K9/62
代理公司: 北京国昊天诚知识产权代理有限公司 11315 代理人: 张阳;许振新
地址: 100081 北京市海淀*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 本申请实施例公开了一种深度学习模型的训练方法、预测方法和装置,针对人工特征拟合XgBoost模型,并通过XgBoost模型提取特征,将提取的特征输入改进的Transformer模型当中,并进一步进行训练,通过该Transformer模型降低人工特征输入的维度,再将该Transformer输出的特征与BERT模型输出的特征进行连接并共同进行训练。通过这种方法,可以在不损失大量预测精度的基础上,有效地降低人工特征输入的维度,从而有效提高深度迁移学习的预测效果。
搜索关键词: 深度 学习 模型 训练 方法 预测 装置
【主权项】:
1.一种深度学习模型的训练方法,其特征在于,所述方法包括:/n基于语料语句训练极端梯度提升模型xgboost模型;/n基于语料语句训练基于Transformer的双向编码器表示Bert模型;/n将语料语句构建的人工特征样本数据作为xgboost模型的输入,得到包含拟合特征的第一预测数据;/n将所述第一预测数据作为Transformer模型的输入,对Transformer模型进行训练,所述Transformer模型包括依次连接的卷积层、多头注意力模块、前向传播模块和平均池化层;/n将语料语句作为Bert模型的输入,将所述语料语句构建的人工特征样本数据经所述xgboost模型的预测数据作为所述Transformer模型的输入,将所述语料语句对应的标签作为所述Bert模型和所述Transformer模型的共同输出,对所述Bert模型和所述Transformer模型进行联合训练,所述Bert模型与所述Transformer模型共同连接拼接层后输出。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京百分点科技集团股份有限公司,未经北京百分点科技集团股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910983661.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top