[发明专利]基于特征自适应选择和WDNN的风电爬坡事件预测方法有效
申请号: | 201910986952.8 | 申请日: | 2019-10-17 |
公开(公告)号: | CN110766215B | 公开(公告)日: | 2022-04-01 |
发明(设计)人: | 唐振浩;孟庆煜;曹生现 | 申请(专利权)人: | 东北电力大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/06;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 沈阳东大知识产权代理有限公司 21109 | 代理人: | 梁焱 |
地址: | 132012 吉*** | 国省代码: | 吉林;22 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及风电爬坡事件预测技术领域,提供一种基于特征自适应选择和WDNN的风电爬坡事件预测方法。首先采集风机运行原始数据集并对其进行归一化;然后构建风电爬坡事件样本集PTr;接着基于特征自适应选择方法,从样本集PTr中选出相关样本集,并对每个相关样本中有功功率构成的信号进行小波分解,将分解得到的信号与温度及类别标签数据进行组合,得到分解后的样本集;再以分解后的样本集中除类别标签之外的变量为输入、类别标签为输出,构建并训练基于DNN的风电爬坡事件预测模型;最后实时采集并处理风机运行原始数据,利用训练后的预测模型输出对应的类别标签。本发明能够优化风电爬坡事件预测模型的输入变量,提高预测的精度。 | ||
搜索关键词: | 基于 特征 自适应 选择 wdnn 爬坡 事件 预测 方法 | ||
【主权项】:
1.一种基于特征自适应选择和WDNN的风电爬坡事件预测方法,其特征在于,包括下述步骤:/n步骤1:从风电场中的数据采集与监视控制系统中以采样周期Δt按时序提取时间L
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东北电力大学,未经东北电力大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910986952.8/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理