[发明专利]一种基于深度卷积神经网络的多时次风速预测方法有效
申请号: | 201910987871.X | 申请日: | 2019-10-17 |
公开(公告)号: | CN110991690B | 公开(公告)日: | 2023-05-12 |
发明(设计)人: | 陈巧特;何彩芬;符冉迪;周阳涨;金炜 | 申请(专利权)人: | 宁波大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/26;G06N3/0464 |
代理公司: | 宁波奥圣专利代理有限公司 33226 | 代理人: | 程天鹏 |
地址: | 315211 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度卷积神经网络的多时次风速预测方法,特点是首先构建模型输入特征图,再基于深度卷积神经网络建立预测模型,最后根据建立的预测模型进行风速的多时次提前预测;优点是使用滑动窗口的方式从历史实测数据和数值天气预报模型的预测数据中构造了二维的特征图,这种形式的输入数据保留了原始数据的时序信息并可以参与卷积运算,构建的预测模型不仅利用了一维卷积神经网络提取相邻时域内各个气象变量之间的浅层局部特征,而且还利用了二维卷积神经网络由浅入深地挖掘浅层局部特征中潜在的深层抽象特征信息,为回归预测层提供了有效的深度特征数据,提高了模型的整体预测性能。 | ||
搜索关键词: | 一种 基于 深度 卷积 神经网络 多时 风速 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于宁波大学,未经宁波大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910987871.X/,转载请声明来源钻瓜专利网。
- 上一篇:一种全光逻辑门
- 下一篇:一种基于智能启发式算法的分布式存储系统调度方法
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理