[发明专利]端到端基于卷积循环神经网络的轴承健康指标构建方法有效
申请号: | 201911004003.1 | 申请日: | 2019-10-22 |
公开(公告)号: | CN110633792B | 公开(公告)日: | 2022-03-22 |
发明(设计)人: | 徐光华;陈龙庭;张四聪;况佳臣 | 申请(专利权)人: | 西安交通大学 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/08;G01M13/045 |
代理公司: | 西安智大知识产权代理事务所 61215 | 代理人: | 贺建斌 |
地址: | 710049 陕*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种端到端基于卷积循环神经网络的轴承健康指标构建方法,先搭建卷积循环神经网络模型CRNN,得到能衡量轴承退化程度的健康指标CRNN‑HI;然后进行卷积循环神经网络模型CRNN模型训练;最后进行卷积循环神经网络模型CRNN评估;本发明通过整合卷积神经网络CNNs和循环神经网络RNNs的结构优势,利用RNNs编码CNNs输出的特征图的时序信息,一方面消除了CNNs不能编码时序特征和感受野小的缺陷,另一方面也消除了RNNs不能自适应地从原始数据中提取HI相关特征的缺陷,使得CRNN‑HI在轴承健康状态退化评估方面取得了较高的相关性、单调性和准确性;同时本发明构建的CRNN‑HI指标将轴承的非线性退化过程近似表征为随时间变化的线性过程,为滚动轴承的健康状态评估和退化程度的确定提供了方便。 | ||
搜索关键词: | 端到端 基于 卷积 循环 神经网络 轴承 健康 指标 构建 方法 | ||
【主权项】:
1.一种端到端基于卷积循环神经网络的轴承健康指标构建方法,其特征在于,包括以下步骤:/n1)搭建卷积循环神经网络模型CRNN:卷积循环神经网络模型CRNN的输入为被标准化的原始轴承振动信号数据,卷积循环神经网络模型CRNN包含两个组件,一个组件是用来提取局部特征的卷积神经网络CNNs,由交替堆叠的卷积层和池化层组成,为了加速网络的训练过程和收敛速度,在卷积神经网络CNNs中加入了BatchNorm层和残差连接结构;卷积神经网络CNNs包含4组残差单元,每一个残差单元包含有2个卷积层且每个残差单元对输入的数据均进行降采样,卷积神经网络CNNs的第一个卷积层采用预激活设计,整个卷积层中卷积核的大小均为16;另外一个组件用来提取带有时间序列信息的全局特征,并循环连接上述局部特征的循环神经网络,采用长短期记忆网络LSTM实现,长短期记忆网络LSTM在每一个时刻的输入为卷积神经网络CNNs输出的特征图上的每一个特征点,时间长度等于特征图的维度;长短期记忆网络LSTM在t时刻的输出通过以下公式计算:/nf
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201911004003.1/,转载请声明来源钻瓜专利网。