[发明专利]一种基于深度卷积神经网络的蓝莓成熟度的无损检测方法在审
申请号: | 201911026968.0 | 申请日: | 2019-10-26 |
公开(公告)号: | CN110736709A | 公开(公告)日: | 2020-01-31 |
发明(设计)人: | 王波;牟昌红;袁泽斌;欧阳秀琴 | 申请(专利权)人: | 苏州大学 |
主分类号: | G01N21/31 | 分类号: | G01N21/31;G06T7/00;G06T7/90 |
代理公司: | 32293 苏州国诚专利代理有限公司 | 代理人: | 王丽 |
地址: | 215123 江苏*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明一种基于深度卷积神经网络的蓝莓成熟度的无损检测方法,先采摘不同成熟期的蓝莓样本,同时采集每时期采摘前蓝莓果实的彩色图像信息,对每时期的蓝莓进行叶绿素测定,构建蓝莓叶绿素预测含量网络BCPN,并输入蓝莓图像,随后进行框标记和打标签得到叶绿素含量预测数据集,训练叶绿素含量模型并对输出的叶绿素含量与果实的成熟度进行映射,通过值与值之间的映射之后,通过最终的预测结果映射值判断当前映射值所处的成熟度。本发明提供的基于深度卷积神经网络的蓝莓成熟度的无损检测方法,对蓝莓皮叶绿素的预测准确率达96%以上,对不同品种的蓝莓果实成熟度的无损检测有很好的通用性,精度高,提高果实成熟度检测的准确性和效率。 | ||
搜索关键词: | 蓝莓 成熟度 叶绿素 映射 无损检测 卷积神经网络 蓝莓果实 采摘 叶绿素含量模型 彩色图像信息 果实成熟度 叶绿素测定 含量预测 预测结果 数据集 预测 准确率 构建 样本 标签 果实 采集 图像 输出 检测 网络 | ||
【主权项】:
1.一种基于深度卷积神经网络的蓝莓成熟度的无损检测方法,其特征在于,包括以下步骤:/n(1)采摘从蓝莓果实着色期至完全成熟期的蓝莓样本,取样N次,同时采集每时期采摘前蓝莓果实的彩色图像信息,备用;/n(2)测定步骤(1)中采摘的每时期的蓝莓果皮中的叶绿素含量并记录;/n(3)图像预处理:调整步骤(1)拍摄的图片的分辨率,作为训练样本,输入蓝莓叶绿素预测含量网络中,在图像的训练和测试过程中,采用去平均方法对输入蓝莓叶绿素预测网络的图像数据进行处理;/n(4)构建叶绿素含量预测数据集:利用Label-Image脚本对步骤(3)中处理好的图片进行框标记,然后用测量的每个时期的叶绿素值分别对相应时期的图片进行打标签,构建叶绿素含量预测数据集,并且将叶绿素含量预测数据集分成训练数据集和测试数据集两部分;/n(5)训练、测试叶绿素含量预测模型:将边界框作为标记信息输入到蓝莓叶绿素预测含量网络中,进行蓝莓特征提取,在生成的特征基础上生成相应的蓝莓边界框,随后将边界框的相关信息映射到原始图像的特征图上,将映射后的蓝莓特征转化为高维特征向量,生成的高维向量可以作为预测叶绿素含量的特征信息,将训练好的叶绿素含量预测模型对输出的叶绿素含量与果实的成熟度进行映射,通过值与值之间的映射之后,能够通过最终的预测结果映射值,判断当前映射值所处的成熟度。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于苏州大学,未经苏州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201911026968.0/,转载请声明来源钻瓜专利网。