[发明专利]基于改进深度神经网络的图像分类方法、装置与电子设备有效
申请号: | 201911046087.5 | 申请日: | 2019-10-30 |
公开(公告)号: | CN110852361B | 公开(公告)日: | 2022-10-25 |
发明(设计)人: | 刘哲宇;乔飞 | 申请(专利权)人: | 清华大学 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/774;G06V10/82;G06N3/04 |
代理公司: | 北京路浩知识产权代理有限公司 11002 | 代理人: | 王宇杨 |
地址: | 100084 北京市海*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明实施例提供一种基于改进深度神经网络的图像分类方法、装置与电子设备,其中该方法包括:在深度神经网络模型的前馈网络中插入近似算子,并对插入近似算子后的深度神经网络模型进行再训练;在再训练的过程中,对所述插入近似算子后的深度神经网络模型进行硬件近似,获取硬件简化模型;利用该硬件简化模型,对待分类图像进行类别划分。本发明实施例通过在深度神经网络模型的前馈网络中插入近似算子,实现将模型中的精确运算单元逐步替换为近似运算单元,能有效解决训练过程的收敛性问题,同时通过将模型权重量化为定点数,能够有效提高模型的容错能力,从而有效提高对图像的分类效率和精确度。 | ||
搜索关键词: | 基于 改进 深度 神经网络 图像 分类 方法 装置 电子设备 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201911046087.5/,转载请声明来源钻瓜专利网。