[发明专利]面向图数据的独立解耦卷积神经网络表征算法在审
申请号: | 201911057124.2 | 申请日: | 2019-10-31 |
公开(公告)号: | CN110889015A | 公开(公告)日: | 2020-03-17 |
发明(设计)人: | 刘彦北;李赫南;肖志涛;耿磊;张芳;吴俊;王雯 | 申请(专利权)人: | 天津工业大学 |
主分类号: | G06F16/901 | 分类号: | G06F16/901;G06F17/16;G06N3/04 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 300387 天津市*** | 国省代码: | 天津;12 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种面向图数据的独立解耦卷积神经网络表征算法。它提出了一种全新的利用独立因素解耦的神经网络结构,先利用邻域路由机制进行解耦表征学习,接着通过HSIC算法增强了节点与邻居节点之间潜在因素表示的独立性,并将其作为正则化项集成到卷积神经网络中。通过本发明方法可以增强节点潜在因素间的独立性,得到更好的图节点分离表示。经过不同图数据的验证,本发明可应用于包括半监督图分类、图聚类和图可视化这三类任务,并且均具有良好的性能和明显的优势。 | ||
搜索关键词: | 面向 数据 独立 卷积 神经网络 表征 算法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津工业大学,未经天津工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201911057124.2/,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置