[发明专利]一种基于深度强化学习的时间序列分类方法在审

专利信息
申请号: 201911070579.8 申请日: 2019-11-05
公开(公告)号: CN110826624A 公开(公告)日: 2020-02-21
发明(设计)人: 杨尚明;刘勇国;李巧勤;刘朗;任志扬;陈智 申请(专利权)人: 电子科技大学
主分类号: G06K9/62 分类号: G06K9/62;G06N3/04;G06N3/08
代理公司: 成都正华专利代理事务所(普通合伙) 51229 代理人: 陈选中
地址: 611731 四川省成*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度强化学习的时间序列分类方法,包括以下步骤:采集若干时间序列,获取样本数据,并对样本数据进行预处理;构建深度残差网络,根据预处理后的样本数据,并通过深度强化学习方法对深度残差网络进行更新;将待测试的时间序列输入更新完成的深度残差网络,得到时间序列的分类结果。本发明通过将样本打乱顺序输入深度强化学习网络,使其更具鲁棒性,设置奖励和惩罚的方式寻找时间序列分类的最优策略,拥有高的分类准确度。
搜索关键词: 一种 基于 深度 强化 学习 时间 序列 分类 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201911070579.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top