[发明专利]可重构的自然语言深度卷积神经网络加速器有效
申请号: | 201911083419.7 | 申请日: | 2019-11-07 |
公开(公告)号: | CN111126593B | 公开(公告)日: | 2023-05-05 |
发明(设计)人: | 刘诗玮;张怡云;史传进 | 申请(专利权)人: | 复旦大学 |
主分类号: | G06N3/082 | 分类号: | G06N3/082;G06N3/0464 |
代理公司: | 上海正旦专利代理有限公司 31200 | 代理人: | 陆飞;陆尤 |
地址: | 200433 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明属于集成电路技术领域,具体为一种可重构的自然语言深度卷积神经网络加速器。本发明加速器是基于时间序列输入的,包括:多组可重构的计算单元向量,用于实现不同尺寸卷积核的计算;多组多输入加法树,用于求和不同输入通道的乘法结果;一个输入特征图存储单元;多组输出特征图存储单元,用于存储计算过程中的中间结果以及最终的输出特征值;一个控制单元,用于配置计算单元向量、计算流程以及数据流向。本加速器特意针对输入的语言时间序列进行优化,避免当前输入序列小于空洞卷积感受野时的重复计算与计算暂停的问题;同时可重构的计算单元向量可以实现不同尺寸的卷积核计算。 | ||
搜索关键词: | 可重构 自然语言 深度 卷积 神经网络 加速器 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于复旦大学,未经复旦大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201911083419.7/,转载请声明来源钻瓜专利网。