[发明专利]一种基于数据驱动的机器人鲁棒学习预测控制方法有效
申请号: | 201911095625.X | 申请日: | 2019-11-11 |
公开(公告)号: | CN110647042B | 公开(公告)日: | 2022-04-26 |
发明(设计)人: | 张兴龙;陆阳;徐昕;刘嘉航 | 申请(专利权)人: | 中国人民解放军国防科技大学 |
主分类号: | G05B13/04 | 分类号: | G05B13/04 |
代理公司: | 长沙国科天河知识产权代理有限公司 43225 | 代理人: | 邱轶 |
地址: | 410073 湖*** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于数据驱动的机器人鲁棒学习预测控制方法,通过数据驱动的方式来对系统的动力学进行辨识,将机器人的非线性特性抽象至高维线性空间,获得机器人系统的全局线性化模型;对机器人系统的原始状态量与控制量的取值范围进行收缩,并将收缩结果作为全局线性化模型的状态量与控制量的取值范围,在存在逼近残差情况下满足原始状态量与控制量的取值范围、并保持闭环控制的鲁棒性;基于全局线性化模型和高维线性空间中的状态变量来进行不断地滚动优化,学习得到机器人系统当前时刻的近似最优预测控制序列。其应用对象是动力学特性未知且不易获取和辨识、存在状态和控制量约束的一类系统为非线性的机器人,能够实现快速高效的闭环控制。 | ||
搜索关键词: | 一种 基于 数据 驱动 机器人 学习 预测 控制 方法 | ||
【主权项】:
1.一种基于数据驱动的机器人鲁棒学习预测控制方法,其特征在于,包括以下步骤:/n步骤1,基于数据驱动将机器人系统的非线性特性抽象至高维线性空间,得到机器人系统的全局高维线性化表示,即机器人系统的全局线性化模型;/n步骤2,对机器人系统的原始状态量与控制量的取值范围进行收缩,并将收缩结果作为全局线性化模型的状态量与控制量的取值范围;/n步骤3,基于全局线性化模型和高维线性空间中的状态变量来进行不断地滚动优化,学习得到机器人系统当前时刻的近似最优预测控制序列;/n步骤4,根据当前时刻的近似最优预测控制序列得到实际控制率;/n步骤5,将当前时刻的实际控制率应用于机器人系统以更新机器人系统,得到机器人系统下一时刻的状态量,然后对该状态量进行映射处理以将其更新至高维线性空间中的状态变量后重复步骤3-5。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军国防科技大学,未经中国人民解放军国防科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201911095625.X/,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置