[发明专利]用户聚类及特征学习方法、设备、计算机可读介质有效
申请号: | 201911115032.5 | 申请日: | 2019-11-14 |
公开(公告)号: | CN111062416B | 公开(公告)日: | 2021-09-21 |
发明(设计)人: | 李怀松;潘健民 | 申请(专利权)人: | 支付宝(杭州)信息技术有限公司 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08;G06Q30/06 |
代理公司: | 北京晋德允升知识产权代理有限公司 11623 | 代理人: | 王戈 |
地址: | 310012 浙江省杭州市*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本申请提供了一种用户聚类及特征学习方案,结合了聚类算法和深度学习网络中的编码解码模型,可以先基于用户的交易行为数据确定用户的交易行为序列,而后基于深度学习网络的编码器,将各个用户的交易行为序列进行编码,生成深度特征;在根据所述深度特征对用户进行聚类获取聚类结果的同时,基于深度学习网络的解码器,对所述深度特征进行解码,获得还原的交易行为序列;而后根据聚类结果和解码结果确定学习目标,并根据学习目标对所述深度学习网络的编码器和解码器的参数进行迭代调整,由此在完成聚类的同时,能够优化深度学习网络,以获得更好的、用于实现聚类的深度特征。 | ||
搜索关键词: | 用户 特征 学习方法 设备 计算机 可读 介质 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于支付宝(杭州)信息技术有限公司,未经支付宝(杭州)信息技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201911115032.5/,转载请声明来源钻瓜专利网。