[发明专利]基于语义层级的多任务Triplet损失函数学习方法有效
申请号: | 201911124067.5 | 申请日: | 2019-11-18 |
公开(公告)号: | CN110909785B | 公开(公告)日: | 2021-09-14 |
发明(设计)人: | 何贵青;李凤;王琪瑶;张琪琦 | 申请(专利权)人: | 西北工业大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N20/00 |
代理公司: | 西北工业大学专利中心 61204 | 代理人: | 金凤 |
地址: | 710072 *** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种基于语义层级的多任务Triplet损失函数学习方法,为数据库构建语义层级网络,语义层级进行triplets采样,对多任务Triplet网络训练,利用树分类器进行多任务分类。本发明针对Triplet网络多层次化训练的问题,提出了一种将语义层级网络与Triplet相结合的损失函数,利用语义知识指导网络层次化的区分样本结构,学习到一种包含语义层级信息且泛化性更强Triplet特征,有效的运用在多任务学习中,提升了不同语义层次下的特征可分性。同时,研究了一种新的层级化采样方法,使得网络能够挖掘到更有效的hard triplets,最终提升网络的性能。 | ||
搜索关键词: | 基于 语义 层级 任务 triplet 损失 函数 学习方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北工业大学,未经西北工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201911124067.5/,转载请声明来源钻瓜专利网。
- 上一篇:一种无应力反射镜座固定装置及装配方法
- 下一篇:软件监控方法及相关设备