[发明专利]基于语义层级的多任务Triplet损失函数学习方法有效

专利信息
申请号: 201911124067.5 申请日: 2019-11-18
公开(公告)号: CN110909785B 公开(公告)日: 2021-09-14
发明(设计)人: 何贵青;李凤;王琪瑶;张琪琦 申请(专利权)人: 西北工业大学
主分类号: G06K9/62 分类号: G06K9/62;G06N20/00
代理公司: 西北工业大学专利中心 61204 代理人: 金凤
地址: 710072 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供了一种基于语义层级的多任务Triplet损失函数学习方法,为数据库构建语义层级网络,语义层级进行triplets采样,对多任务Triplet网络训练,利用树分类器进行多任务分类。本发明针对Triplet网络多层次化训练的问题,提出了一种将语义层级网络与Triplet相结合的损失函数,利用语义知识指导网络层次化的区分样本结构,学习到一种包含语义层级信息且泛化性更强Triplet特征,有效的运用在多任务学习中,提升了不同语义层次下的特征可分性。同时,研究了一种新的层级化采样方法,使得网络能够挖掘到更有效的hard triplets,最终提升网络的性能。
搜索关键词: 基于 语义 层级 任务 triplet 损失 函数 学习方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北工业大学,未经西北工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201911124067.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top