[发明专利]边缘计算中基于分层张量分解的联邦学习方法有效
申请号: | 201911125638.7 | 申请日: | 2019-11-18 |
公开(公告)号: | CN110909865B | 公开(公告)日: | 2022-08-30 |
发明(设计)人: | 郑海峰;高敏;马金凤;冯心欣 | 申请(专利权)人: | 福州大学 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/08;G06N20/00;G06F9/50 |
代理公司: | 福州元创专利商标代理有限公司 35100 | 代理人: | 陈明鑫;蔡学俊 |
地址: | 350108 福建省福州市*** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种边缘计算中基于分层张量分解的联邦学习方法。步骤S1:在云端设计有效的深度神经网络共享模型;步骤S2:根据分层张量分解方法对设计的共享模型进行压缩得到分层共享模型;步骤S3:设计分层共享模型对应的正向传播算法和反向传播算法;步骤S4:在云端对分层共享模型进行初始化并下发至参与训练的边缘节点;步骤S5:参与训练的边缘节点利用本地数据集,并根据S3设计的算法对S2得到的分层共享模型进行学习。步骤S6:在云端通过平均聚合的方式对边缘模型进行聚合。本发明在保护用户隐私的前提下实现了共享模型的分布式训练,减少分布式训练时对网络带宽的需求,降低了边缘节点的通信能耗。 | ||
搜索关键词: | 边缘 计算 基于 分层 张量 分解 联邦 学习方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于福州大学,未经福州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201911125638.7/,转载请声明来源钻瓜专利网。