[发明专利]一种基于对抗生成网络的半监督工业图像缺陷分割方法有效

专利信息
申请号: 201911134257.5 申请日: 2019-11-19
公开(公告)号: CN110880176B 公开(公告)日: 2022-04-26
发明(设计)人: 余永强;楼利璇;刘小为 申请(专利权)人: 浙江大学
主分类号: G06T7/00 分类号: G06T7/00;G06T7/11;G06N3/04;G06N3/08
代理公司: 杭州求是专利事务所有限公司 33200 代理人: 贾玉霞
地址: 310058 浙江*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开一种基于对抗生成网络的半监督工业图像缺陷分割方法,使用少量标注的带有缺陷的负样本和大量没有缺陷的正样本来训练神经网络从而得到能对缺陷自动识别的分割网络。在神经网络的构建过程中分别使用了基于D‑LinkNet的分割网络和基于U‑net重构网络,通过交叉训练的方式来分离负样本和正样本的特征空间从而使分割网络能正确分割出负样本中的缺陷。本方法能大大减少对工业缺陷样本图像的依赖,同时能大幅度减少分割模型在分割缺陷时的误差。
搜索关键词: 一种 基于 对抗 生成 网络 监督 工业 图像 缺陷 分割 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201911134257.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top