[发明专利]一种极化欧拉特征融合深度学习的海上目标识别方法有效

专利信息
申请号: 201911142677.8 申请日: 2019-11-20
公开(公告)号: CN110826643B 公开(公告)日: 2022-08-19
发明(设计)人: 顾丹丹;李永晨;高伟;魏飞鸣 申请(专利权)人: 上海无线电设备研究所
主分类号: G06V10/764 分类号: G06V10/764;G01S7/41
代理公司: 上海元好知识产权代理有限公司 31323 代理人: 徐雯琼;章丽娟
地址: 200233 *** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种极化欧拉特征融合深度学习的海上目标识别方法,该方法包含以下步骤:S1、海上人造目标的极化散射机制分析;S2、基于步骤S1的分析结果,构建对应的海上几何体极化距离矩阵数据集,并对极化距离矩阵数据集的样本进行多极化特征提取;S3、基于步骤S2,训练多极化特征融合的深度学习模型;S4、采用海上人造目标对步骤S3的多极化特征融合的深度学习模型识别测试验证。其优点是:该方法从海上目标的基础极化散射机制出发,基于深度学习融合利用HRRP和极化信息实现目标识别,消除了方位敏感性带来的不利影响,提高了雷达目标识别的精度,具有检测率高、虚警率低、扩展应用灵活、处理过程全自动的优点。
搜索关键词: 一种 极化 特征 融合 深度 学习 海上 目标 识别 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海无线电设备研究所,未经上海无线电设备研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201911142677.8/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code