[发明专利]一种基于剪枝深度模型用于自然场景图像文本识别方法在审
申请号: | 201911221023.4 | 申请日: | 2019-12-03 |
公开(公告)号: | CN111178133A | 公开(公告)日: | 2020-05-19 |
发明(设计)人: | 刘杰;张雪 | 申请(专利权)人: | 哈尔滨工程大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/20;G06N3/04;G06N3/08 |
代理公司: | 北京汇众通达知识产权代理事务所(普通合伙) 11622 | 代理人: | 李志男 |
地址: | 150001 黑龙江*** | 国省代码: | 黑龙江;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于剪枝深度模型用于自然场景图像文本识别方法;主要涉及修剪深度网络(Yolo v3‑Darknet53)和修剪后的深度网络对自然场景图像中文本进行检测和识别;该方法包括对深度网络剪枝策略、过滤检测模型输出的特征图、使用VGG16网络对文本信息提取、微调包围框、对文本信息进行识别;本发明使用文本检测和识别通用的ICDAR2015作为训练集和测试集,可以有效地展现自然场景图像的多种复杂性;计算机视觉领域的CNN规模日渐庞大,本发明旨在缩减网络规模、节省训练时间、缓解硬件设备压力、减小对检测和识别准确率的影响。 | ||
搜索关键词: | 一种 基于 剪枝 深度 模型 用于 自然 场景 图像 文本 识别 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工程大学,未经哈尔滨工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201911221023.4/,转载请声明来源钻瓜专利网。