[发明专利]一种基于多任务深度学习的票据文本检测方法有效

专利信息
申请号: 201911225976.8 申请日: 2019-12-04
公开(公告)号: CN111027443B 公开(公告)日: 2023-04-07
发明(设计)人: 刘桂雄;刘思洋 申请(专利权)人: 华南理工大学
主分类号: G06V30/40 分类号: G06V30/40;G06V30/148;G06V30/19;G06V10/82;G06N3/0464;G06N3/08
代理公司: 北京天奇智新知识产权代理有限公司 11340 代理人: 陈新胜
地址: 510640 广东*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种基于多任务深度学习的票据文本检测方法,所述方法包括:构建多层卷积神经网络作为图像特征提取骨干网络,实现票据图像的特征提取;在卷积特征图上标注票据文本区域及区域中心线并训练,实现票据文本信息区域分割与文本中心线检测;在票据文本信息区域内通过滑动窗口方法沿着文本中心线前行,实现票据文本信息区域的单字符分割;依次对分割后的单个字符进行分类识别,形成完成票据文本信息。本发明利用深度学习强大的特征提取、归纳能力,提出采用端到端的多任务学习方法,实现票据文本区域分割、文本字符分割、文本字符识别,解决经典票据文本信息检测方法适用性不足、效率不高的问题。
搜索关键词: 一种 基于 任务 深度 学习 票据 文本 检测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201911225976.8/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top