[发明专利]一种基于多任务深度学习的票据文本检测方法有效
申请号: | 201911225976.8 | 申请日: | 2019-12-04 |
公开(公告)号: | CN111027443B | 公开(公告)日: | 2023-04-07 |
发明(设计)人: | 刘桂雄;刘思洋 | 申请(专利权)人: | 华南理工大学 |
主分类号: | G06V30/40 | 分类号: | G06V30/40;G06V30/148;G06V30/19;G06V10/82;G06N3/0464;G06N3/08 |
代理公司: | 北京天奇智新知识产权代理有限公司 11340 | 代理人: | 陈新胜 |
地址: | 510640 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种基于多任务深度学习的票据文本检测方法,所述方法包括:构建多层卷积神经网络作为图像特征提取骨干网络,实现票据图像的特征提取;在卷积特征图上标注票据文本区域及区域中心线并训练,实现票据文本信息区域分割与文本中心线检测;在票据文本信息区域内通过滑动窗口方法沿着文本中心线前行,实现票据文本信息区域的单字符分割;依次对分割后的单个字符进行分类识别,形成完成票据文本信息。本发明利用深度学习强大的特征提取、归纳能力,提出采用端到端的多任务学习方法,实现票据文本区域分割、文本字符分割、文本字符识别,解决经典票据文本信息检测方法适用性不足、效率不高的问题。 | ||
搜索关键词: | 一种 基于 任务 深度 学习 票据 文本 检测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201911225976.8/,转载请声明来源钻瓜专利网。