[发明专利]一种基于深度表示学习跟动态匹配的行人再识别方法有效
申请号: | 201911266339.5 | 申请日: | 2019-12-11 |
公开(公告)号: | CN111126198B | 公开(公告)日: | 2023-05-09 |
发明(设计)人: | 谢晓华;宋展仁;赖剑煌 | 申请(专利权)人: | 中山大学 |
主分类号: | G06V40/10 | 分类号: | G06V40/10;G06V10/26;G06V10/40;G06V10/44;G06V10/82;G06V10/74;G06N3/0464;G06N3/08 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 刘巧霞 |
地址: | 510275 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度表示学习跟动态匹配的行人再识别方法,用于判别在不同时间或者区域的行人身份。包括:构建特征提取模型,用于提取全局、局部特征,利用全局特征、局部特征进行联合学习;实现不同行人局部特征之间的动态匹配,使用三元组损失函数进行学习模型;取检索库和查询库中行人图片的全局特征,计算查询库行人和检索库行人的全局特征间的相似度分数,并利用相似度分数进行排序,获取查询库中行人在检索库中所对应的行人。本发明利用全局特征跟局部特征进行联合学习,其中实现了局部特征之间的对齐,这样使得模型学习到的全局特征同时关注了局部信息跟全局信息。缓解了行人再识别中的局部不对齐问题,提升了模型再识别的性能。 | ||
搜索关键词: | 一种 基于 深度 表示 学习 动态 匹配 行人 识别 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中山大学,未经中山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201911266339.5/,转载请声明来源钻瓜专利网。