[发明专利]基于深度卷积神经网络的番茄病害识别方法有效
申请号: | 201911268844.3 | 申请日: | 2019-12-11 |
公开(公告)号: | CN111046793B | 公开(公告)日: | 2023-05-02 |
发明(设计)人: | 张涛;朱显坤;张琨 | 申请(专利权)人: | 北京工业大学 |
主分类号: | G06V20/52 | 分类号: | G06V20/52;G06V10/774;G06V10/764;G06V10/82;G06N3/0464;G06N3/048;G06N3/045;G06N3/08 |
代理公司: | 北京思海天达知识产权代理有限公司 11203 | 代理人: | 沈波 |
地址: | 100124 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了基于深度卷积神经网络的番茄病害识别方法,本发明采用深度神经网络Residual 56Attention,ResNet通过残差学习解决了深度网络的退化问题,以训练出更深的网络的同时节省了大量资源占用。Residual 56Attention在ResNet基础上引入了Attention机制,逐渐提取高层特征并增大模型的感受野,高层特征的激活对应位置能够反映attention的区域,然后再对这种具有attention特征的feature map进行上采样,使其大小回到原始feature map的大小,就将attention对应到原始图片的每一个位置上。在原有的Residual 56Attention网络基础上所有的激活函数层均使用ELU函数作为激活函数,在样本识别时运算效率更高,而模型参数减少,收敛速度更快,降低了资源的占用,以及对软硬件的高需求,可以更好投入到实际使用。 | ||
搜索关键词: | 基于 深度 卷积 神经网络 番茄 病害 识别 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京工业大学,未经北京工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201911268844.3/,转载请声明来源钻瓜专利网。