[发明专利]一种基于元结构的无监督异质网络表示学习方法有效

专利信息
申请号: 201911327882.1 申请日: 2019-12-20
公开(公告)号: CN111091005B 公开(公告)日: 2022-05-13
发明(设计)人: 冯春燕;楚云霏;郭彩丽;贺同泽 申请(专利权)人: 北京邮电大学
主分类号: G06F40/295 分类号: G06F40/295;G06F40/30;G06N3/08
代理公司: 暂无信息 代理人: 暂无信息
地址: 100876 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于元结构的无监督异质网络表示学习方法,属于人工智能领域。首先给出事件数据的定义,并构建针对事件数据的异质网络模型;采用元结构来描述事件数据中基于事件的关联关系类型,并基于给定的元结构进行邻居节点采样;提出基于元结构邻近度的网络表示学习模型,以捕捉单视角下基于事件语义的关联关系;提出融合多视角关联关系的网络表示学习模型,以捕捉多视角下基于事件语义的关联关系;最后用随机梯度下降法进行训练,得到各节点的特征向量表示。本发明提出用元结构描述复杂的事件语义关系,设计网络表示学习模型解决了事件数据缺乏标签、异质、关联多视角的挑战,提供了低复杂度的训练算法。
搜索关键词: 一种 基于 结构 监督 网络 表示 学习方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京邮电大学,未经北京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201911327882.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top