[发明专利]一种基于互信息的LSTM神经网络循环水文预报方法在审

专利信息
申请号: 201911329550.7 申请日: 2019-12-20
公开(公告)号: CN111310968A 公开(公告)日: 2020-06-19
发明(设计)人: 陈晨;梁肖旭;吕宁;周扬;肖凤林;李暨 申请(专利权)人: 西安电子科技大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06N3/04;G06K9/62;G06F16/29
代理公司: 西安长和专利代理有限公司 61227 代理人: 何畏
地址: 710071 陕西省*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明属于数据处理技术领域,公开了一种基于互信息的LSTM神经网络循环水文预报方法,通过互信息分析对原始数据进行筛选和分类,将降雨、水库水位、流量水文特征作为长短期记忆循环预测模型的输入特征;通过模拟降雨过程训练和确定LSTMC模型的结构,反映洪水的长期变化;利用实际洪水资料对模型的输出进行验证。本发明采用基于互信息的方法分析数据集,充分的捕获当前时刻流量与之前较长时间段的各个水文特征,动态的选取模型的输入特征。本发明利用深度学习算法,采用基于LSTM神经网络的循环预测模型,在用于洪水流量时间序列预测时,克服了水文变化过程受前期各方面因素影响较大的问题,能够较好的自动捕获有效特征。
搜索关键词: 一种 基于 互信 lstm 神经网络 循环 水文 预报 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201911329550.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top