[发明专利]一种基于多特征融合的静态手势图像识别方法有效
申请号: | 201911336419.3 | 申请日: | 2019-12-23 |
公开(公告)号: | CN111160194B | 公开(公告)日: | 2022-06-24 |
发明(设计)人: | 田秋红;包嘉欣;杨慧敏;陈影柔 | 申请(专利权)人: | 浙江理工大学 |
主分类号: | G06V40/10 | 分类号: | G06V40/10;G06V10/26;G06V10/44;G06V10/50;G06V10/56;G06V10/46;G06V10/762;G06V10/764;G06V10/80;G06V10/82;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 杭州求是专利事务所有限公司 33200 | 代理人: | 林超 |
地址: | 310018 浙江省杭*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于多特征融合的静态手势图像识别方法。利用综合多要素的图像处理方法对原始的手势图像进行分割,然后对分割后的手势图像进行局部特征提取,局部特征包含Gabor特征、HOG特征和Hu矩特征;将原始的手势图像转换成灰度图像,然后构建了一个双通道卷积神经网络分别提取手势图像的特征,将提取的特征进行求和作为深层次特征;将手势图像的局部特征和深层次特征进行融合,获得融合特征;将融合特征输入到分类器中分类获得不同类别的概率,以最大概率的类别作为手势图像中的手势类别识别结果。本发明提出的方式能够解决复杂背景下的26种手势字母的识别问题,且获得了较高的识别率。 | ||
搜索关键词: | 一种 基于 特征 融合 静态 手势 图像 识别 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江理工大学,未经浙江理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201911336419.3/,转载请声明来源钻瓜专利网。