[发明专利]一种基于机器学习的远程缓冲区溢出攻击检测方法有效
申请号: | 201911344300.0 | 申请日: | 2019-12-23 |
公开(公告)号: | CN113098832B | 公开(公告)日: | 2022-09-27 |
发明(设计)人: | 刘亮;李书彬;郑荣锋 | 申请(专利权)人: | 四川大学 |
主分类号: | H04L9/40 | 分类号: | H04L9/40 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 610065 四川*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明应用于计算机流量分析领域,旨在用机器学习的方法建立模型用于对网络入侵活动中的缓冲区溢出攻击进行检测。本发明首先通过复现大量远程缓冲区溢出漏洞的exploit来收集攻击流量样本,再结合正常数据流量组成完整的数据集。该方法首先提取样本流量的基本信息,组成完整的tcp流,再利用本方法特有的特征提取规则对样本进行特征提取,将预处理后的特征利用不同模型的机器学习方法进行训练,测试和比较,选择分类效果最好的模型作为检测远程缓冲区溢出漏洞攻击的分类器。本方法具有精准度高,误报率低,耗时短,等特点,利用本方法进行远程缓冲区溢出攻击检测能够有效的在网络中识别具有缓冲区溢出攻击行为的恶意流量,便于进行拦截和防御。 | ||
搜索关键词: | 一种 基于 机器 学习 远程 缓冲区 溢出 攻击 检测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于四川大学,未经四川大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201911344300.0/,转载请声明来源钻瓜专利网。