[发明专利]基于双流卷积神经网络的无参考图像质量评估方法有效

专利信息
申请号: 201911352653.5 申请日: 2019-12-25
公开(公告)号: CN111127435B 公开(公告)日: 2022-11-15
发明(设计)人: 牛玉贞;陈锋;陈沛祥;黄栋 申请(专利权)人: 福州大学
主分类号: G06T7/00 分类号: G06T7/00;G06N3/04;G06N3/08
代理公司: 福州元创专利商标代理有限公司 35100 代理人: 陈明鑫;蔡学俊
地址: 350108 福建省福州市*** 国省代码: 福建;35
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于双流卷积神经网络的无参考图像质量评估方法,包括以下步骤:步骤S1:将失真图像数据进行数据预处理,得到待训练的图像对,作为训练数据;步骤S2:构建双流卷积神经网络模型,并根据得到训练数据训练模型,得到训练好的图像质量评估模型;步骤S3:将待测图像进行预处理,并生成待测图像的图像对,并利用训练好的图像质量评估模型预测待测图像的图像对的质量,根据待测图像的图像对的分数计算待测图像的分数。本发明能显著提高无参照图像质量评估的性能。
搜索关键词: 基于 双流 卷积 神经网络 参考 图像 质量 评估 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于福州大学,未经福州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201911352653.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top