[发明专利]基于美学分析的多任务深度网络下的图像显著性预测方法有效
申请号: | 201911385418.8 | 申请日: | 2019-12-28 |
公开(公告)号: | CN111144497B | 公开(公告)日: | 2023-04-28 |
发明(设计)人: | 张静;吕锦成;刘婧;苏育挺 | 申请(专利权)人: | 天津大学 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/46;G06V10/82;G06N3/0464;G06N3/084 |
代理公司: | 天津市北洋有限责任专利代理事务所 12201 | 代理人: | 杜文茹 |
地址: | 300072*** | 国省代码: | 天津;12 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于美学分析的多任务深度网络下的图像显著性预测方法:设计多任务卷积神经网络;将AVA美学分析数据库和SALICON显著性数据库的图像同时输入到设计好的多任务卷积神经网络;定义多任务卷积神经网络的损失函数,通过反向传播算法最小化损失函数;将测试集的图像经过多任务卷积神经网络并通过softmax级联输出单张图片的显著性映射分布。本发明能够提高模型预测图像显著性的鲁棒性,避免了需要统一图像尺寸而造成的图像信息结构破坏,大幅提高了图像显著性映射分布预测的精度,改善了传统方法缺少融合和关联人类视觉美学信息的问题。 | ||
搜索关键词: | 基于 美学 分析 任务 深度 网络 图像 显著 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201911385418.8/,转载请声明来源钻瓜专利网。