[发明专利]基于Hadoop的DGCNN模型加速方法在审

专利信息
申请号: 201911412304.8 申请日: 2019-12-31
公开(公告)号: CN111160535A 公开(公告)日: 2020-05-15
发明(设计)人: 杨雨婷;吴超;张在进;高晨;陈旭 申请(专利权)人: 北京计算机技术及应用研究所
主分类号: G06N3/04 分类号: G06N3/04;G06N3/08;G06N3/063
代理公司: 中国兵器工业集团公司专利中心 11011 代理人: 张然
地址: 100854*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于Hadoop的DGCNN加速方法,其中,包括:利用MapReduce实现训练样本和计算答案初始位置与结束位置的并行化,分布式地存储在Hadoop平台的每个节点上,每个节点都存储一个相同的完整的卷积神经网络,对于各小块中的每一个样本,节点都执行一次前向传播和反向传播计算,得出各个权值和偏置的局部改变量以及位置信息,接着汇总每个权值和偏置的局部改变量从而得到全局改变量,多次用全局改变量更新权值之后,获得最终网络;使用CUDA进行特征矩阵、神经元以及权值的并行化,为每一层的特征矩阵启动一个线程格,线程块中每个线程对应一个神经元,使得神经元并行,在误差反向传播中,用一个线程对应一个权值,计算该权值的局部梯度改变量,使得权值并行。
搜索关键词: 基于 hadoop dgcnn 模型 加速 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京计算机技术及应用研究所,未经北京计算机技术及应用研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201911412304.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top