[发明专利]一种基于可信执行环境的联邦学习方法有效
申请号: | 202010020331.7 | 申请日: | 2020-01-09 |
公开(公告)号: | CN111241580B | 公开(公告)日: | 2022-08-09 |
发明(设计)人: | 李进;陈煜;罗芳;李同 | 申请(专利权)人: | 广州大学 |
主分类号: | G06F21/62 | 分类号: | G06F21/62;G06F21/64;G06N3/04;H04L9/32 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 林梅繁 |
地址: | 510006 广东省广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明属于数据安全领域,为基于可信执行环境的联邦学习方法,包括:基于可信执行环境生成安全区;本地用户从云端下载初始化的模型参数,将训练算法、训练数据集、训练数据例子数和云端传回的初始化的模型参数加载到安全区内,得到训练后的模型参数梯度并生成数字签名,通过群签名算法进行本地用户身份认证,将训练后的模型参数梯度、模型集成算法及本地用户身份认证上传到云端;云端对本地用户身份认证进行验证,验证成功后获取所上传的模型参数梯度及模型集成算法,置于云端安全区内,对模型进行集成,更新模型参数梯度。本发明利用可信执行环境生成安全区,用户无法绕过训练过程而直接给出训练结果,实现了训练完整性和用户隐私保护。 | ||
搜索关键词: | 一种 基于 可信 执行 环境 联邦 学习方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广州大学,未经广州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010020331.7/,转载请声明来源钻瓜专利网。