[发明专利]基于自监督域感知网络的零样本训练及相关分类方法有效
申请号: | 202010021866.6 | 申请日: | 2020-01-09 |
公开(公告)号: | CN111222471B | 公开(公告)日: | 2022-07-15 |
发明(设计)人: | 张勇东;张天柱;伍佳敏 | 申请(专利权)人: | 中国科学技术大学 |
主分类号: | G06V40/10 | 分类号: | G06V40/10;G06V10/764;G06V10/82;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 北京凯特来知识产权代理有限公司 11260 | 代理人: | 郑立明;郑哲 |
地址: | 230026 安*** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于自监督域感知网络的零样本训练及相关分类方法,通过自监督学习的方式充分挖掘源域和目标域之间的关系,减少因目标域数据挖掘不充分而导致的域偏差;该方法通过以agent(参考代理)作为桥梁连接所有类别建立联合的嵌入空间,学习域感知的视觉特征,具备更强的知识迁移和泛化能力;该方法基于端到端的神经网络,速度快,精度高,达到了目前最好的零样本识别结果。 | ||
搜索关键词: | 基于 监督 感知 网络 样本 训练 相关 分类 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学技术大学,未经中国科学技术大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010021866.6/,转载请声明来源钻瓜专利网。