[发明专利]一种基于深度学习算法的有向链路预测模型在审

专利信息
申请号: 202010026716.4 申请日: 2020-01-10
公开(公告)号: CN111260028A 公开(公告)日: 2020-06-09
发明(设计)人: 武丹凤;朱纪洪;肖尧;陈志刚 申请(专利权)人: 清华大学
主分类号: G06N3/04 分类号: G06N3/04;G06N3/08
代理公司: 北京三聚阳光知识产权代理有限公司 11250 代理人: 谢楠
地址: 100084*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供了一种基于深度学习算法的有向链路预测模型,服务于分布式大规模网络的拓扑演化。该模型在分布式网络节点的有向邻居链路存在基数约束条件下,基于链路预测主体节点的链接候选邻居节点的当前指标特征和序列特征向量,采用DNN和LSTM深度学习算法,设计了CFSF链路预测模型,解决了存在链接基数约束条件下进行有向链路建立和消失的预测问题,提高了链路预测精度。
搜索关键词: 一种 基于 深度 学习 算法 预测 模型
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010026716.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top