[发明专利]一种用于图像分割的深度强化学习方法有效

专利信息
申请号: 202010029217.0 申请日: 2020-01-10
公开(公告)号: CN111260658B 公开(公告)日: 2023-10-17
发明(设计)人: 曾念寅;刘松明;李寒 申请(专利权)人: 厦门大学
主分类号: G06T7/11 分类号: G06T7/11;G06N3/084
代理公司: 厦门市首创君合专利事务所有限公司 35204 代理人: 张松亭
地址: 361000 *** 国省代码: 福建;35
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种用于图像分割的深度强化学习方法,包括以下步骤:1)采集若干相关图像作为训练图像集,并且对其进行预处理,提取出包含目标区域的感兴趣区域;2)针对要分割图像的特点,建立深度强化学习所需的状态值,动作值以及奖赏值;3)构建合适的深度学习网络模型作为深度强化学习方法中的值网络和目标网络;4)在深度网络训练过程中,利用多因素自学习学习曲线对经验池和样本采样大小进行动态调整;5)完成网络的训练,对测试样本进行运动轨迹的预测,从而得到最终的图像的分割结果。本发明提出了一种用于图像分割的深度强化学习方法,通过构建合理的深度强化学习模型,并且对其经验池和样本采样大小进行合理改进,能够有效提高模型训练效率,获得较为精确的分割结果,具有较强的稳定性和应用性。
搜索关键词: 一种 用于 图像 分割 深度 强化 学习方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于厦门大学,未经厦门大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010029217.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top