[发明专利]一种基于卷积神经网络特征压缩的异常检测方法在审

专利信息
申请号: 202010031422.0 申请日: 2020-01-13
公开(公告)号: CN111291860A 公开(公告)日: 2020-06-16
发明(设计)人: 李思照;姜宏睿;孙建国;巩建光;阎梓宁;王文衫 申请(专利权)人: 哈尔滨工程大学
主分类号: G06N3/04 分类号: G06N3/04;H04L29/06
代理公司: 暂无信息 代理人: 暂无信息
地址: 150001 黑龙江省哈尔滨市南岗区*** 国省代码: 黑龙江;23
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明属于深度学习入侵检测技术领域,具体涉及一种基于卷积神经网络特征压缩的异常检测方法。本发明采用独热编码以及离差标准化的技术,将数据特征进行预处理,使得深度学习模型可以更有效的识别数据集的特征,从而减少数据的失真率;通过嵌入层将独热编码的稀疏矢量压缩为密集矢量,减少每次模型的训练时间;通过离差标准化来对原始数据进行线性变换,使得数据在变幻之后仍然保持原有的线性关系,这样可以提高模型在入侵检测之中的精度。本发明的入侵检测准确率较高,训练时间短,预测精度高,可以广泛应用于网络入侵检测等方面。
搜索关键词: 一种 基于 卷积 神经网络 特征 压缩 异常 检测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工程大学,未经哈尔滨工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010031422.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top