[发明专利]一种集成深度学习和数据去噪的短期风速预测方法有效
申请号: | 202010042211.7 | 申请日: | 2020-01-15 |
公开(公告)号: | CN111242377B | 公开(公告)日: | 2023-08-25 |
发明(设计)人: | 唐俊杰;彭志云;陆彬春;符礼丹;刘梦洁;林星宇 | 申请(专利权)人: | 重庆大学 |
主分类号: | G06F18/10 | 分类号: | G06F18/10;G06F18/2131;G06F18/214;G06N3/0442;G06N3/048;G06N3/08;G06N7/08;G06F123/02 |
代理公司: | 重庆缙云专利代理事务所(特殊普通合伙) 50237 | 代理人: | 王翔 |
地址: | 400044 *** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种集成深度学习和数据去噪的短期风速预测方法,步骤为:1)利用离散小波变换对风速序列A进行分解。2)利用小波软阈值去噪方法区分离散小波变换后的噪声信号和有效信号;3)将噪声信号的小波变换系数设为零,并重建风速时间序列,得到去噪后的风速序列B;4)利用风速序列B训练门控循环单元神经网络,得到风速预测模型;6)将实时风速输入到风速预测模型中,完成未来多步风速预测。本发明可以实现短期风速高质量的预测,以确保电力系统的经济调度和安全运行。 | ||
搜索关键词: | 一种 集成 深度 学习 数据 短期 风速 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆大学,未经重庆大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010042211.7/,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置