[发明专利]一种基于深层卷积神经网络的铸件表面缺陷识别方法有效
申请号: | 202010049394.5 | 申请日: | 2020-01-16 |
公开(公告)号: | CN111223088B | 公开(公告)日: | 2023-05-02 |
发明(设计)人: | 贾民平;邢俊杰;黄鹏;胡建中;许飞云 | 申请(专利权)人: | 东南大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00 |
代理公司: | 南京众联专利代理有限公司 32206 | 代理人: | 朱欣欣 |
地址: | 210096 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度卷积神经网络的铸件表面缺陷识别方法;该方法包括步骤如下:1.收集铸件表面缺陷图像并对图像进行标注,建立一个常见铸件表面缺陷的数据集;2.构建深度卷积神经网络缺陷识别模型;3.构建网络损失函数;4.将数据集分为训练集和测试集,使用训练集对缺陷识别网络进行训练;5.将测试图像输入训练好的网络,就可以识别出缺陷的位置、类型和大小;本发明提升了铸件表面缺陷的识别精度和识别性能,推动了铸件质量检测的在线化、智能化和自动化发展。 | ||
搜索关键词: | 一种 基于 深层 卷积 神经网络 铸件 表面 缺陷 识别 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010049394.5/,转载请声明来源钻瓜专利网。