[发明专利]一种多任务稀疏贝叶斯极限学习机回归方法有效
申请号: | 202010097148.7 | 申请日: | 2020-02-17 |
公开(公告)号: | CN111291898B | 公开(公告)日: | 2020-12-11 |
发明(设计)人: | 黄永;李惠;高竞泽 | 申请(专利权)人: | 哈尔滨工业大学 |
主分类号: | G06N20/00 | 分类号: | G06N20/00;G06N3/04;G06N3/08 |
代理公司: | 哈尔滨市阳光惠远知识产权代理有限公司 23211 | 代理人: | 孙莉莉 |
地址: | 150001 黑龙*** | 国省代码: | 黑龙江;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提出一种多任务稀疏贝叶斯极限学习机回归方法,所述方法包括对于单隐含层神经网络的输入层至隐含层的随机特征提取、输出层权值的多任务稀疏建模及后验估计、多任务稀疏贝叶斯极限学习机参数和超参数快速优化估计等。本发明所述方法采用层次贝叶斯模型对极限学习机输出层权值进行多任务稀疏求解,在保证精度的前提下,裁剪了极限学习机的冗余隐含层神经元,得到了更为紧凑的神经网络,有效的避免了极限学习机的过拟合现象,并能使隐含层神经元个数无须预先确定。从稀疏贝叶斯学习的角度,前端的单隐含层神经网络可以使稀疏贝叶斯学习方法得以应用于非线性问题。 | ||
搜索关键词: | 一种 任务 稀疏 贝叶斯 极限 学习机 回归 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学,未经哈尔滨工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010097148.7/,转载请声明来源钻瓜专利网。
- 上一篇:一种空气过滤器的内部液冷循环系统
- 下一篇:一种吸透波一体化吸波器